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Abstract—Neural networks (NNs) have shown great ability
to process emerging applications such as speech recognition,
language recognition, image classification, video segmentation,
and gaming. It is therefore important to make NNs efficient.
Although attempts have been made to improve NNs’ computation
cost, the data movement between memory and processing cores is
the main bottleneck for NNs’ energy consumption and execution
time. This makes the implementation of NNs significantly slower
on traditional CPU/GPU cores. In this paper, we propose a
novel processing in-memory architecture, called NNPIM, that
significantly accelerates neural network’s inference phase inside
the memory. First, we design a crossbar memory architecture
that supports fast addition, multiplication, and search operations
inside the memory. Second, we introduce simple optimization
techniques which significantly improves NNs’ performance and
reduces the overall energy consumption. We also map all NN
functionalities using parallel in-memory components. To further
improve the efficiency, our design supports weight sharing to
reduce the number of computations in memory and consecutively
speedup NNPIM computation. We compare the efficiency of
our proposed NNPIM with GPU and the state-of-the-art PIM
architectures. Qur evaluation shows that our design can achieve
131.5x higher energy efficiency and is 48.2x faster as compared
to NVIDIA GTX 1080 GPU architecture. Compared to state-of-
the-art neural network accelerators, NNPIM can achieve on an
average 3.6x higher energy efficiency and is 4.6x faster, while
providing the same classification accuracy.

Index Terms—Non-volatile memory, Processing in-Memory,
Neural Networks

I. INTRODUCTION

The emergence of Internet of Things (10T) has significantly
increased the size of application data sets required to be
processed [1]. These large data sets encourage the use of
algorithms which automatically extract useful information
from them and artificial neural networks for this purpose
are being investigated widely. In particular, deep neural net-
works (NNs) demonstrate superior effectiveness for diverse
classification problems, image processing, video segmenta-
tion, speech recognition, computer vision and gaming [2]-
[5]. Although many NN models are implemented on high-
performance computing architectures, such as parallelizable
GPGPUs, running neural networks on the general purpose
processors is still slow, energy hungry, and prohibitively
expensive.

Earlier work proposed several FPGA-based and ASIC de-
signs [6]-[9] to accelerate neural networks. However, these

All authors are with the Department of Computer Science and Engineer-
ing, University of California San Diego, La Jolla, CA, 92093.
E-mail: {sgupta, moimani, hak133, tajana}@ucsd.edu

techniques pose a critical technical challenge due to the cost of
data movement, since they require dedicated memory blocks,
e.g., SRAM, to store the large amount of network weights
and input signals. Prior work exploits several techniques to
optimize the enormous cost, yet the memory still takes up to
90% of the total energy consumption to perform NN inference
tasks even in the ASIC design [7].

Processing in-memory (PIM) is a promising solution to
address the data movement issue by implementing logic within
memory [10]-[15]. Instead of sending a large amount of data
to the processing cores for computation, PIM performs a part
of computation tasks, e.g., bit-wise computations, inside the
memory, thus avoiding the memory access bottleneck and
accelerating the application performance significantly. Some
research work proposes PIM-based neural network acceler-
ators which keep the input data and trained weights inside
memory [10], [16], [17]. For example, work in [17] shows that
memristor devices can model the computations in each neuron.
They store trained weights of each neuron as device resistance
values and pass current representing the input values in a way
similar to spiking-based neuromorphic computing. They only
support two functionalities in memory, addition and multipli-
cation, while other important operations such as activation
functions are implemented using CMOS-based logic, which
would make the fabrication expensive. In addition, Analog to
Digital Converters (ADCs) and Digital to Analog Converters
(DACs) used by their design do not scale along with memory
device technology and take the majority of power (61%). In
this context, the ADC/DAC-based computation would not be
an appropriate solution to design PIM-based NN accelerators.

In this paper, we propose a novel NN accelerator, called
neural network processing in-memory (NNPIM), which sig-
nificantly reduces the overhead of data movements while
supporting all the NN functionalities completely in memory.
To realize such computation, our design first analyzes com-
putation flows of a NN model and encodes key NN opera-
tions for a specialized PIM-enabled accelerator. The proposed
NNPIM supports three layers popularly used for designing a
NN model: fully-connected, convolution, and pooling layer.
We divide the computation tasks of the networks into four
operations, multiplication, addition, activation function, and
pooling. Our accelerator supports all of these operations inside
a crossbar memory. Our evaluation shows that our design can
achieve 131.5x higher energy efficiency and is 48.2 faster as
compared to NVIDIA GTX 1080 GPU architecture. Compared
to state-of-the-art neural network accelerator, NNPIM can
achieve on average 3.6 higher energy efficiency and is 4.6x
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faster, while providing the same classification accuracy.

II. BACKGROUND AND RELATED WORK

A NN model consists of multiple layers which have multiple
neurons. These layers are stacked on top of each other in
a hierarchical formation, so each layer takes the output of
previous layer as input and forwards its output to the next
layer. In this paper, we focus on three types of layers that are
most commonly utilized in practical neural network designs:
(i) convolution layers, (ii) fully connected layers, and (iii)
pooling layers. In neural network, each neuron takes a vector
of inputs from neurons of the preceding layer X = (Xp,--- ,X,,),
then computes its output as follows:

n
P() WiXi +b)

i=1
where W; and X; correspond to a weight and an input re-
spectively, b is a bias parameter, and ¢(.) is a nonlinear
activation function. Prior to the execution of NNs, parameters
W; and b are learned in a training process. For inference,
the pre-trained parameters are used to compute the outputs of
each neuron, called activation units. A neuron produces one
activation unit based on two main operations, the weighted
accumulation, i.e. Y W;X;, and the activation function, i.e. ¢(.).
By processing all the computation through the layers, also
known as feed-forward procedure, it produces multiple outputs
which are used for the final prediction. Two basic operations
are associated to the weighted accumulation: multiplication
and addition. Thus, the key technical challenge is how to
reduce the size of two input sets.

Modern neural network algorithms are executed on dif-
ferent types of platforms such as GPU, FPGAs and ASIC
chips [6], [18]-[21]. Prior works attempt to fully utilize
existing cores to accelerate neural networks. For example, for a
neural network-based image classification, GPU showed high
performance improvement (up to two orders of magnitudes)
over CPU-based implementation [19]. Several research works
show hardware-based accelerators can further improve the
efficiency of neural networks. DaDianNao proposed a series of
ASIC designs which accelerate neural networks [22]. To fully
utilize data locality, they employed high-bandwidth on-chip
eDRAM blocks instead of using SRAM-based synapses [23].
Work in [24] proposed parallel CNN accelerators which use
GPGPUs, FPGAs or ASICs and work based on stochastic
computing. In their design, the main computation still relies
on CMOS-based cores, thus suffering from the data movement
issue. In contrast, the proposed NNPIM accelerator does not
rely on any additional processing cores.

The capability of non-volatile memories (NVMs) to act as
both storage and a processing unit has encouraged research
in processing in-memory. Resistive RAM (RRAM) is one
such memory which stores data in the form of its resis-
tance [12]. Many logic families have been proposed which
implement basic logic operations in-memory. Memory-Aided
Logic (MAGIC) [25] is one of the many proposed logic
families for RRAM. It uses the resistive nature of ReRAM to
implement logic purely in memory without the need for any

special sense amplifiers or requirement of a unique memory
architecture. MAGIC implements the logic NOR operation in
crossbar memory and uses it as the basis for other operations.
Prior work also tried to use RRAMs to design PIM-based
neural network accelerators [16], [17]. These designs use
multi-level memristor devices which perform the multipli-
cation and addition operations by converting digital values
to analog signals. However, these approaches have potential
design issues. Their designs require analog and digital-mixed
circuits, e.g., ADC and DAC, which do not scale with CMOS
technology. The neural network operations other than mul-
tiplication and addition still rely on the CMOS-based logic,
increasing fabrication costs. In contrast, we design the NNPIM
accelerator which supports all neural network computations
inside the memory without using costly ADC/DAC blocks.

III. PIM-BASED NEURAL NETWORK ACCELERATION
A. PIM for Neural Network

Processing in-memory supports essential functionalities

among different memory rows. These operations should be
general enough to benefit many applications. Neural network
computation is based on a few basic operations, so executing
them in-memory can allow us to run whole application inside
a memory. This would reduce data movement issue and
accelerate any network locally in memory.
In inference, neural networks use a combination of convolu-
tion, pooling, and fully connected layers to process or classify
the data. There are two types of data in neural networks:
(i) a large number of trained weights, which we call them
network model and (ii) the input data which is processed by
the network. The main computation in neural network involves
processing the input data over network using the trained
weights. It leads to several computations between weights
and inputs. The goal of PIM is to locally perform operations
between these inputs and weights inside a memory block, such
that there is no need to send data up to processor. To support
all the required operations in memory, we design a PIM archi-
tecture which can perform addition, multiplication, activation
function, and pooling locally in memory. These operations are
managed inside a memory using simple controllers.

The memory architecture used in this work supports the
following functions on the same hardware:

Addition/Multiplication: Our design can execute the ad-
dition of three data values, in memory, by activating their
corresponding rows. If more values have to be added at the
same time, our design implements addition in a tree structure.
The multiplication inside memory is performed in a similar
way, by generating all possible partial products and adding
them in parallel in memory. We talk about details of hardware
implementation in Section III-B.

Activation Function: Traditionally, Sigmoid function has
been used as an activation function [26]. This function is
defined as: S(x) = 1/1+e*. Implementing this function-
ality in memory requires modeling exponential operations.
Our design can handle this operation by using the Taylor
expansion of the Sigmoid function and considering the first
few terms to approximate the Sigmoid function. The Taylor
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expansion only consists of addition and multiplication. We
can easily implement any function in memory as long as
it is representable by Taylor expansion and the more terms
we consider in Taylor expansion, the better the model is for
activation functions. Prior work showed that it is not necessary
to use Sigmoid as an activation function. Instead, using simple
“Rectified Linear Unit” clamped at a certain point (e.g. X=a)
could provide similar or better accuracy than Sigmoid. In that
case, the activation function can be implemented using a single
comparator which checks if input X surpasses a value a. Note
that in case of rectified linear unit, activation function can be
processed simply inside a controller.

Pooling: Our hardware implements in-memory pooling
using nearest search operation. PIM stores the output of
convolution layer inside a memory block with nearest search
capability. The NNPIM pooling unit can be logically viewed as
a lookup table, where each data is present in a separate row
of the crossbar memory. Further, the data within a pooling
window may or may not be present in consecutive rows.
For each pooling window, our search-based pooling activates
the corresponding rows, i.e. charges the wordlines, and then
applies voltages at the bitlines corresponding to MIN/MAX
operation [15], [27], [28]. The wordline which discharges first
is the output of the pooling window. To find the maximum
value, our design searches for a row with the closest distance
(maximum similarity) to inf value. This inf value in hardware
is the maximum value which can be represented by hardware.
Using this block, we can search for the MAX value among the
selected rows inside the memory. Similarly, the MIN pooling
can be implemented by searching for the smallest value in
lookup table (—inf).

The implementation of average pooling is equivalent to
addition operation followed by division. However, division is
a difficult operation in memory. To avoid the use of a special
division accelerator/circuit, the weights in the layer preceding
the pooling layer are normalized before being encoded in
NNPIM. Hence, the average operation simply becomes an ad-
dition operation. The data corresponding to a pooling window
is added using data intensive addition operation discussed in
Section III-B.

B. In-Memory Addition/Multiplication

In-memory operations are in general slower than the cor-
responding CMOS based implementations. This is worsened
by the serial nature of previously proposed PIM techniques. In
this section, we propose a fast adder for memristive memories,
which introduces parallelism in addition and optimizes its
latency. Our design is based on the idea of carry save addition
(CSA) and adapts it for in-memory computation. We further
use a Wallace-tree inspired structure to leverage the fast 3:2
reduction of our new in-memory adder design. The implemen-
tation of this new adder is made feasible by the configurable
interconnects which we previously proposed in [12].

We use MAGIC NOR [25] to execute logic functions in
memory due to its simplicity and independence of execution
from data in memory. An execution voltage, Vj, is applied
to the bitlines of the inputs (in case of NOR in a row) or

3

wordlines of the outputs (in case of NOR in a column) in
order to evaluate NOR, while the bitlines of the outputs (NOR
in a row) or wordlines of the inputs (NOR in a column) are
grounded. The work in [29] extends this idea to implement
adder in a crossbar. It executes a pattern of voltages in order
to evaluate sum (S) and carry (C,,) bits of 1-bit full addition
(inputs being A, B,C) given by

Cou = ((A+B)' +(B+C)' + (C+A)')'.
S=((A"+B' +C") +((A+B+C)' +Cou)')')-

(1a)
(1b)

Here, C,, is realized as a series of 4 NOR operations while
S is obtained by 3 NOT operations (evaluation of A’ B,
and C’) followed by 5 NOR operations. A NOT operation is
implemented as a NOR operation with 1 input. Extending this
1-bit addition to N-bit addition requires propagating carry
between different bits, consuming N times the latency of 1-bit
addition. We define a cycle time (= 1.1ns) as the time taken
to implement one MAGIC NOR operation. This design takes
12N + 1 cycles to add two N-bit numbers.

The design in [29] is good for small numbers but as the
length of numbers increases, time taken increases linearly. A
N x M multiplication requires addition of M partial products,
each of size N bits, to generate a (N + M)-bit product. This
takes (M —1)-(12(N —1)+ 1) cycles to obtain the final
product.

Figure 1 describes our fast addition which we implement in
memory using MAGIC NOR. Figure 1(a) shows carry save
addition. Here, S1[n] and Cl[n| are the sum and carry-out
bits, respectively of 1-bit addition of Al[n], A2[n], and A3[n].
The 1-bit adders do not propagate the carry bit and generate
two outputs. This makes the n additions independent of each
other. The proposed adder exploits this property of CSA.
Since, MAGIC execution scheme doesn’t depend upon the
operands of addition, multiple addition operations can execute
in parallel if the inputs are mapped correctly. The design
utilizes the memory unit proposed in [12], which supports
shifting operations, to implement CSA like behaviour. The
latency of this 3:2 reduction, 3 inputs to 2 outputs, is same as
that of a 1-bit addition (i.e., 13 cycles) irrespective of the size
of operands. The two numbers can then be added serially,
consuming 12N + 1 cycles. This totals to 12N + 14 cycles
while the previous adder would take 24N — 22 cycles. The
difference increases linearly with the size of inputs.

Figure 1(b) shows the Wallace-tree inspired structure we
use to add multiple numbers (9 n-bit numbers in this case). At
every stage of execution, the available addends are divided in
groups of three. The addends are then added using a separate
adder (as described above) for each group, generating two
outputs per group. The additions in the same stage of execution
are independent and can occur in parallel to each other. Our
configurable interconnect, introduced in [12], arranges the
outputs of this stage in groups of three for addition in the
next stage. This structure takes a total of four stages for
9:2 reduction, having the same delay as that of four 1-bit
additions. At the end of the tree structure we are left with
two (N + 3)-bit numbers which can then be added serially.
The tree-structured addition reduces the delay substantially
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Fig. 1. (a) Carry save addition (b) Tree structured addition of 9 n-bit numbers

as carry propagation happens only in the last stage, unlike
the conventional approach where carry is propagated at every
step of addition. Although this speed up comes at the cost
of increased energy consumption and number of writes in
memory, it is acceptable because the latency is reduced by
large margins as shown in Section V.

To extend the idea to multiplication, our design in [12]
generates partial products by looking at one of the input
operands and copy-shift the other one. We then use the fast
addition explained above to add the partial products together.
This provides a huge latency improvement over the previous
in-memory adder designs. We further optimize the massive
amount of shift operations involved in such computations. Our
design divides the crossbar memory into multiple data and pro-
cessing blocks [12] which we describe later in Section IV-D. A
data-processing block pair contains a configurable interconnect
between the two blocks which accelerates shifting and enables
shifting multiple bits in parallel [12].

C. In-Memory Search Operation

As discussed in Section III-A MIN/MAX pooling involves
searching the memory block for the data nearest to — inf/inf.
An efficient way to perform these search operation is to
implement it in-memory. We utilize the inherent characteristics
of capacitors to discharge differentially to search for the
nearest (least hamming distance) data. We also use a voltage
application technique which enables efficient nearest data
search based on binary distance. We apply this technique to
search for the minimum or maximum value among the outputs
of convolution layers.

For a search in conventional CAM, the match-lines (MLs)
are pre-charged to V,,; and then bitlines are driven with V,; or
0 depending upon the input query. The MLs of rows with more
number of matches discharge earlier. The line to discharge
first is the one with minimum mismatch with the input query.
To give binary weight to the bits, the authors in [27] modify
the bitline driving voltage. Suppose a stage contains m bits
(m—1:0). The bitlines which were earlier driven with V,,; are
now driven with a voltage V; = Vz4/20"~1=) where i denotes
the index of a bit in the stage. Here, a bit with higher index
are driven by a higher voltage, giving it more weight than
the lower bits. Hence, a match in the most significant bit
results in faster ML discharging current than lower indices.

We exploit this difference to implement MIN/MAX pooling
as done in [27].

IV. NNPIM DESIGN
A. NNPIM Overview

In conventional systems, sensors are connected to the pro-
cessing system. The output from the sensors is placed into
local storage (often NVM). At the time of processing, the core
reads the data stored in memory sequentially. Once the data is
processed, the outputs are stored back in the memory. NNPIM
acts as an accelerator accompanying the processor. It acts as a
secondary memory such that the output from sensors, is sent
to NNPIM instead of the main memory. Now, since the model
is already stored in NNPIM, the sensor data can be processed
in NNPIM without involving the data transfers in conventional
systems. The output of the network is generated and stored in
NNPIM and can be sent to the processor when requested.

As described before, an inference task in neural network
involves multiplying inputs with the weights, which are cal-
culated during the training phase. Once a network is trained,
the weights remain constant and do not change over different
inference tasks. The previously proposed hardware designs
to accelerate neural networks do not exploit this property
of neural networks. In such cases, multiplication with fixed
weights is computationally as expensive as that with variable
weights.

NNPIM uses this fixed nature of weights to reduce the
complexity of in-memory neural network multiplications. In-
stead of using the weights directly, NNPIM breaks down the
weights into simpler factors. These factors are chosen such
that multiplying a number with them just requires a shift
and add/subtract operation. Hence, instead of exhaustively
generating all the partial products and adding them, we rely on
the fixed nature of weights to pre-process them and calculate
their “multiplication-friendly” factors. All these computations
utilize the PIM operations proposed in Section III.

A neural network usually involves a large number of
weights. Using this large number of weights restricts the
enhancements which in-memory processing can provide. We
realize that the memory requirement and energy consumption
of NNPIM depend on the number of weights. Hence, we use
weight sharing to reduce the number of unique weights in
each neuron [15], [30]. Since all the computations in NNPIM
happen in-memory, we design NNPIM such that this reduction
in weights directly results in a decrease in the number of
memory blocks required for computations.

B. Weight Clustering in NNPIM

The conventional NN requires a large number of multi-
plications. We leverage shared weights to reduce number of
operations, i.e. multiple inputs of each neuron share the same
value, however, a naive implementation of weight sharing can
result in undesirable loss of accuracy. We devise a greedy
algorithm to select the near optimized shared weights that
reduce the loss of accuracy; instead of applying shared weights
to the already trained NN, we train the NN in a way that weight
sharing does not impose much loss of accuracy.
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The weights of each layer are fixed in the inference phase;
in order to share the weights, the clustering algorithm is
applied on the fixed weights. Assuming that a fully-connected
layer maps N neurons into M outputs, the corresponding
matrix Wysy is clustered once and a single set of weights
are generated for the whole matrix. For convolution layers,
the weights corresponding to different output channels are
clustered separately: a convolution layer mapping N channels
into M channels using a weight tensor Wy, ,xnxp is divided
into M different tensors and each tensor is clustered separately,
resulting in M different weights.

After clustering, each weight is replaced by their closest
centroids [30]. The objective of clustering is to minimize the
within cluster sum of squares (WCSS):

) Nelusters ! 2
min  (WCSS= Y Y [Wi-cal’) @
Cil ""’CiNcluxterx k=1 W']'ecik
ij

where C = {c,-l,ciz, ""CiNclusrcm} are the cluster centroids. We
use K-means algorithm for clustering.

Weight clustering essentially finds the best matches that can
represent this distribution, and replaces all parameters with
their closest centroids. Weight clustering is often accompanied
by some degree of additive error, Ae = e jystered — €baseline-

To compensate for this error, our algorithm retrains the
neural network based on the new weight constraints. After
each retraining, our design again clusters the weights and
estimates the quality of the classification using the new cluster
centers. The procedure of weight clustering and retraining
continues until the estimated error becomes smaller than a
desired level. Otherwise the retraining procedure stops after a
pre-specified number of epochs. Figure 2 shows the accuracy
of neural network for MNIST dataset during different retrain-
ing iterations. The result shows that retraining improves the
classification accuracy by finding a suitable clusters for each
neuron weights.

One major advantage of weight sharing is that it can
significantly reduce the number of required multiplications.
Each neuron in neural network multiplies several input data,
say n, with pre-stored weights. Therefore, each neuron requires
to multiply n input-weight pairs. Using weight clustering, the
number of distinct weights in each neuron can be reduced to
k, where k << n. Instead of multiplying all input-weight pairs,
we can simply add all inputs which share the same weight and
finally multiply the result of addition with the weight value.
This method reduces the number of multiplications in each
neuron from n to k. This significantly accelerates the NNPIM
computation, since in PIM the multiplication performs much
slower than addition. Moreover, our hardware enables fast ad-
dition of multiple input vectors in-memory. Hence, the inputs
corresponding to the same weight can first be added together
using carry save addition. Then, the result can be multiplied
with the weight. In other words, multiple multiplications are
broken down into a large addition and a multiplication. In this
way, we reduce the number of computations required as well
as the complexity of operations involved.
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Fig. 2. An example of the MNIST classification accuracy during different
retraining iterations when the NN weights are shared into eight cluster centers.

C. NNPIM Multiplication

The multiplier in Section III-B performs exhaustive binary
multiplication. It generates a partial product for each ’1’
present in the multiplier and performs addition. Although this
approach is general and works for all applications but it can
lead to unnecessary latency overheads in certain cases. For
example, multiplication by 255 (b11111111) would require
generation of 8 partial products, corresponding to each ’1°, and
their subsequent addition. The same operation can executed by
multiplying by 256, i.e. shifting by 8 bits, and then subtracting
the multiplicand from the obtained result.

Bernstein algorithm [31] factorizes the constant multiplier
into factors which are a power of 2 or a power of 2 & 1. It uses
branch and bound based search pruning and finds the factors
based on a formulation for their costs. Figure 3 gives an exam-
ple of how the algorithm can reduce the number of operations.
In this case, binary multiplication takes 6 instructions whereas
the factor-based multiplication takes only 4 instructions. The
binary method is the worst case factorization which can be
obtained using the algorithm.

Using this algorithm involves finding suitable factors. It
can be time consuming and may add unwanted latency if
the operands change frequently. However, such an algorithm
can be useful if one of the operands is constant. In that
case, the constant operand can be factorized once and these
factors can be referenced every time the constant is involved
in multiplication. This makes such factorization suitable for
neural networks, where the weights are always constant and
only the inputs are variable. NNPIM exploits this property
by storing the factors of the weights and using these factors
for computations. We now discuss two ways in which we
use Bernstein algorithm to improve computations in neural
networks. One approach aims to minimize the energy con-
sumption of the design while the other approach presents a
latency-optimized technique.

Energy-Optimized NNPIM: The hardware in Section III-B
utilizes carry save addition to reduce the latency of multi-
plication. However, in order to minimize the propagation of
carry and reduce the latency, it implements a large number of
partially redundant parallel operations. This consumes signifi-
cant amount of energy. A naive energy-efficient design would
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Fig. 4. Generating the partial products in latency-optimized NNPIM

process all partial products serially, adding two at a time.
Such a design is intuitive but does not exploit the constant
operands in neural networks. The inference phase of neural
networks involves multiplication of many input vectors with
weights obtained from the training phase and fixed during
inference. This phase is defined by multiplication of variables,
i.e. input vectors, with constants, i.e. weights, making it a
suitable application for Bernstein algorithm. We can accelerate
the testing phase by factorizing the weights and using these
factors instead of actual weights for computation. For the
example discussed before, binary implementation requires 6
serial shift or add operations, while NNPIM only requires 4
serial shift, add, or subtract operations.

Latency-Optimized NNPIM: The above approach based
on Bernstein algorithm is perfect when the total energy
consumption of the design is the major concern. Bernstein
algorithm reduces the number of operations required but does
not necessarily accelerate the overall in-memory processing.
In carry save addition, carry is propagated only in the end to
minimize the time taken to compute the final product. Breaking
the weights into smaller factors requires the computation of
multiple intermediate products to achieve the final output.
Factorizing 119 into 7 and 17 leads to two carry propagation
stages instead of one. Since carry propagation is the bottleneck
in the multiplication process, many such operations make it
impossible to gain time from the reduced number of instruc-
tions.

In order to reduce latency, NNPIM uses an adder structure
similar to that in Section III-B while taking into consideration
the constant operand in neural networks. It exploits the fact
that in binary representation, a sequence of s, for example
b00011111, can be written as a difference of two shifted 1s, i.e.
00011111 = »00100000 — HOO000001. Instead of generating
multiple shifted partial products, NNPIM generates only two

partial products. It is similar to Booth’s recoding but differs in
the way it is implemented in memory. Instead of applying the
operations serially as in the case of Booth’s recoding, we mod-
ify subtraction to make it suitable for parallel execution. To
maintain uniformity by executing only addition instructions,
NNPIM simplifies subtraction as shown in Figure 4. In the
figure, generation of 2’s complement of M1 involves inversion
of M1 and addition of 1. Inversion is a single MAGIC NOR
step, where all the bits can be inverted in parallel. Moreover,
1 is added to the shifted version of M1. The LSB of the
shifted M1 is always 0, converting the addition of 1 (Add1
in Figure 4) to a simple SET operation on LSB. The two
partial products can then be added normally as in case of a
conventional multiplication.

The above technique may not be applicable directly since
it is highly unlikely for the weights to always be a sequence
of 1’s. Hence, we propose a modified version of Bernstein
algorithm which is suitable for carry save addition. Instead
of breaking down the constant operands into smaller factors,
we break them down into chunks of continuous 1s as shown
in Figure 5. These smaller parts of constants are then re-
duced using the same concept as discussed above. Since this
approach generates two partial products for a series of s,
reduction is done only when there are more than 2 consecutive
I’s. In the example shown in Figure 5, the binary execution
would require 11 partial products, but the optimized one
generates just 6 partial products. Unlike the factors obtained
by Bernstein algorithm, these partial products are added in
parallel using carry save addition. This reduces the latency of
NNPIM significantly.

Figure 6 compares the energy-optimized and latency-
optimized approaches for 32-bit multiplication. The result
shows that energy-optimized approach can provide 2.3x en-
ergy efficiency as compared to latency-optimized approach,
while the latency-optimized can be 1.8x faster.

D. NNPIM Architecture

Figure 7 details the architecture of the proposed NNPIM.
Figure 7a shows the overview of the architecture of NNPIM.
Each neuron in NN has a corresponding computation unit.
Each of this unit is made up of several computation sub-units,
one for every weight corresponding to the inputs of the neuron.
Every unit has an additional computation sub-unit which is
responsible for accumulation of all the multiplication results
for a neuron and implementing the activation function, which
we call activation unit. The outputs from all the activation units
are sent to the pooling unit. In case pooling is not required,
the output of activation units is used directly for the next layer.

NNPIM is entirely based on crossbar memory. The crossbar
structure is divided into smaller blocks, upper blocks and
lower blocks as shown in Figure 7b. All these blocks are
architecturally and functionally the same as described in [12].
Each computation sub-unit as well as activation unit is one
such block pair (pair of one upper and one lower block). All
the computations for a weight are executed in the correspond-
ing block pair. Hence, a neuron with N weights will have
N computation sub-units which implies N block pairs. The
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major peripheral circuitry including the bitline and wordline
controllers, sense amplifiers, row/column decoders, etc. are
shared by all these pairs.

Each upper block is connected to the corresponding lower
block via configurable interconnects as shown in Figure 7c.
These interconnects are collection of switches, similar to a
barrel shifter, which connects the bitlines of the two blocks.
b, and D), are bitlines coming into and going out of the
interconnect respectively. The select signals, s, control the
amount of shift. These interconnects can connect cells with
different bitlines together. For example, they can connect
by, bus1,bpi2,... incoming bitlines to, say, b, 4,0, 5,b), 6, ..
outgoing bitlines, respectively, hence enabling the flow of
current between the cells on different bitlines of blocks.
This kind of a structure makes the otherwise slow shifting
operations energy efficient and fast, having the latency same as
that of a normal copy operation. It is important because neural
networks involve large number of shift operations (mainly due
to multiplication), which could be a bottleneck if not dealt at
the hardware level.

All the outputs of multiplication for a neuron are accumu-
lated and Taylor expanded activation function is implemented
in the activation unit, which is made up of the same sub-
unit as described above. The outputs of all these units are
sent to the pooling unit. This pooling unit is a usual crossbar
memory which doesn’t require splitting the memory into
multiple blocks. The pooling unit works on the in-memory
search operations described in Section III-C. The outputs from
all the activation units are written and the outputs closest to
+inf/ —inf are selected for MAX/MIN pooling.

In a general purpose implementation, the weights would be
stored in memory and the inputs would get multiplied with
the stored weights in parallel in different blocks. However,

such an architecture will not be able to take advantage of
the optimizations proposed in the previous sections. NNPIM
uses a control-store architecture, where a control word for a
block is defined by a shared operand and the corresponding
local control vector (CV). Instead of storing the actual fixed
weights in the memory, we pre-program the control words in
the memory. These control words are optimized based on the
techniques proposed before. The memory unit loads a control
word and implements the operation without worrying about
the actual weights.

The shared controller for the bitline and wordline, takes in
2-bit operands as shown in Figure 7b. Each operand, detailed
in Figure 7d, corresponds to a specific function required
by NNPIM for computations. Each pair of upper and lower
blocks in our architecture has an independent shift controller
which governs the bit shifts between the two blocks. The
shift controller is a simple circuit which activates a particular
select line depending upon the control vector sent to it. The
control vector has two fields: (i) active flag which indicates
whether the shift controller is active in that cycle and (ii) a
5-bit field indicating the amount of shift. A computational
unit has a common shared operand list, while each sub-unit
(i.e. each block pair) has its own CV list. A memory with
N block pairs has N configurable interconnects and hence, N
shift controllers. Each operand sent to the shared controller has
a corresponding control vector for each shift controller. Our
architecture enables independent shifts among different pairs
of blocks while introducing very little overhead as shown in
Section V.

Example: Figure 8 shows sample execution of two NNPIM
multiplications in parallel, Inl x W1 and In2 x W2. After
applying the optimization described in Section IV-C, the first
multiplication results in 5 partial products while the second
multiplication results in 6 partial products. The partial products
generation by a shift and subtraction (i and ii in Figure 8) take
three operations each. Here, in order to reduce the number
of operations, the shifts before and after the subtraction are
combined together. Also, the last operation in the example is
not required by W1. So, the enable bit in the control vector
for W1 is set to zero.

E. In-Memory Parallelism

NNPIM uses a blocked memory structure as shown in Fig-
ure 7b. Here, each block processes computation corresponding
to one weight. Since each block pair in NNPIM has a shift
controller, all these blocks can independently implement mul-
tiplication in parallel and computation for multiple weights can
happen simultaneously. The number of computations possible
in parallel directly effect the number of neurons that can
be processed in parallel. This is limited by the size of the
memory available. Assume that our memory allows for 2k
block pairs. In a network where each neuron has 512 weights
corresponding to 512 inputs, our memory can implement just
4 (=2k/512) neurons in parallel. This can be a bottleneck in
large networks.

Weight sharing turns out to be useful in such cases as
it restricts the number of unique weights for each neurons,
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Fig. 8. Operands and control vectors for two parallel NNPIM multiplications.

thereby enabling the execution of more neurons in parallel. For
the case discussed above, the number of neurons possible to be
executed in parallel increases from 4 to 32 when the number
of weights are restricted to 64. This further increases to 64,
128, and 256 when the number of weights are restricted to 32,
16, and 8 respectively. More the number of neurons executed
in parallel, lesser is the overall latency of the network. Hence,
weight sharing not only reduces the number of computations
but also increases the overall performance of the network as
further verified in Section V.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We designed the NNPIM framework support, which retrains
NN models for the accelerator configuration, in C++ while ex-
ploiting two back-ends, Scikit-learn library [32] for clustering
and Tensorflow [33] for the model training and verification.
For the accelerator design, we use Cadence Virtuoso tool for
circuit-level simulations and calculate energy consumption and
performance of all the NNPIM memory blocks. The NNPIM
controller has been designed using System Verilog and syn-
thesized using Synopsys Design Compiler in 45nm TSMC
technology. The sense amplifier is similar to that used in [12].
Each sense amplifier reads one bit with latency and energy
consumption of 150ps and 9.1f]J respectively. We use VTEAM

memristor model [34] for our memory design simulations with
Ron and Rppp of 10kQ and 10MQ respectively [12], [35].
The reduction in the ratio of Ron and Roff affects NNPIM
performance. A smaller ratio would increase the delay of
MAGIC NOR. However, for the device model used in the
paper, the increase in delay is negligible when the ratio is
1:100 but increases more than 3x for the ratio 1:10 [29]. We
compare the proposed NNPIM accelerator with GPU-based
DNN implementations, running on NVIDIA GPU GTX 1080.
The performance and energy of GPU are measured by the
nvidia-smi tool. We used a batch size of 16 on GPU and
for all tested applications, and the GPU utilization was higher
than 85% and was on an average §9%.

B. Workloads

We compare the efficiency of the proposed PIM and GPU
by running four general OpenCL applications including: So-
bel, Robert, Fast Fourier transform (FFT) and DwHaarlD.
For image processing we use random images from Caltech
101 [36] library, while for non-image processing applications
inputs are generated randomly. Majority of these applications
consists of additions and multiplications. The other common
operations such as square root has been approximated by these
two functions in the source code.

We also evaluate the efficiency of the proposed NNPIM
over six popular neural network applications, similar to work
in [15]:

Handwriting classification (MNIST) [37]: MNIST includes
images of handwritten digits. The objective is to classify an
input image to one of ten digits, 0 ...9.

Voice Recognition (ISOLET) [38]: ISOLET consists of
speech signals collected from 150 speakers. The goal is to
classify the vocal signal into one of 26 English letters.
Indoor Localization (INDOOR) [39]: We designed a NN
model for the indoor localization dataset. This NN localizes
into one of 13 places where there is high loss in GPS signals.
Activity Recognition (HAR) [40]: The dataset includes
signals collected from motion sensors for 8 subjects
performing 19 different activities. The objective is to
recognize the class of human activities.

Object Recognition (CIFAR) [41]: CIFAR-10 and CIFAR-
100 are two datasets which include 50000 training and 10000
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TABLE I
NN MODELS AND BASELINE ERROR RATES FOR 6 APPLICATIONS (INPUT
LAYER - IN, FULLY CONNECTED LAYER - FC, CONVOLUTION LAYER - C,
AND POOLING LAYER - PL.)

Dataset Network Topology Error
MNIST IN : 784, FC:512, FC:512, FC: 10 1.5%
ISOLET IN : 617, FC:512, FC:512, FC:26 3.6%
INDOOR IN :520, FC:512, FC:512, FC: 13 4.2%
HAR IN :561, FC:512, FC:512, FC: 19 1.7%
CIFAR-10 | IN:32x32x3,CV:32x3x3,PL:2X2, 14.4%
CIFAR-100 | CV:64x3x3,CV:64x3x3,FC:512, FC:10 (100) | 42.3%
ImageNet VGG-16 [45] 28.5%
ImageNet GoogleNet [46] 15.6%

testing images belonging to 10 and 100 classes, respectively.
The goal is to classify an input image to the correct category,
e.g., animals, airplane, automobile, ship, truck, etc.
ILSVRC2012 Image Classification (ImageNet) [42]: This
dataset contains about 1200000 training samples and 50000
validation samples. The objective is to classify each image to
one of 1000 categories.

Table I presents the NN topologies and baseline error rates for
the original models before weight sharing. The error rate is
defined by the ratio of the number of misclassified data to the
total number of a testing dataset. Each NN model is trained
using stochastic gradient descent with momentum [43].
In order to avoid overfitting, Dropout [44] is applied to
fully-connected layers with a drop rate of 0.5. In all the
NN topologies, the activation functions are set to “Rectified
Linear Unit” (ReLU), and a “Softmax” function is applied to
the output layer.

C. NNPIM & Dataset Size

Figure 9 shows the energy savings and performance im-
provements of running applications on PIM, normalized to
GPU energy and performance. For each application, the size
of input dataset increases from 1Kb to 1GB. In traditional
cores, the energy and performance of computation consists of
two terms: computation and data movement. In small dataset
(KB), the computation cost is dominant, while running appli-
cations with large datasets ("GB), the energy and performance
of consumption are bound by the data movement rather than
computation cost. This data movement is due to small cache
size of transitional core which increases the number of cache
miss. Consecutively, this degrades the energy consumption
and performance of data movement between the memory and
caches. In addition, large number of cache misses, significantly
slows down the computation in traditional cores. In contrast, in
proposed PIM architecture the dataset is already stored in the
memory and computation is major cost. Therefore, regardless
of dataset size (the dataset can fit on PIM), the PIM energy
and performance of increases linearly by the dataset size.
Although the memory-based computation in the PIM is slower
than transitional CMOS-based computation (i.e. floating point
units in GPU), in processing the large dataset, the proposed
PIM works significantly faster than GPU. In terms of energy,
the memory-based operations in PIM is more energy efficient
than GPU. Our evaluation shows that for most applications

9
TABLE II
QUALITY LOSS OF DIFFERENT NN APPLICATIONS DUE TO WEIGHT
SHARING.
Dataset 8 weights | 16 weights | 32 weights | 64 weights
MNIST 1.1% 0.26% 0% 0%
ISOLET 0.33% 0.12% 0% 0%
INDOOR 0.38% 0.24% 0.13% 0%
HAR 2.1% 0.32% 0.14% 0%
CIFAR-10 1.2% 0.29% 0.09% 0%
CIFAR-100 2.4% 1.2% 0.8% 0%
ImageNet (VGG) 4.6% 2.5% 1.0% 0%
ImageNet (GoogleNet) 6.3% 3.1% 0.9% 0%

using datasets larger than 200MB (which is true for many IoT
applications), proposed PIM is much faster and more energy
efficient than GPU. With 1GB dataset, the PIM design can
achieve 28 x energy savings, 4.8 x performance improvement
as compared to GPU architecture.

D. Comparison of NNPIM with Previous PIM Implementa-
tions

Figure 10 compares the performance efficiency of the
proposed design with the state-of-the-art prior work [29],
[47]. The work in [29] computes addition in-memory using
MAGIC logic family, while the work in [47] uses the com-
plementary resistive switching to perform addition inside the
crossbar memory. Our evaluation comparing the energy and
performance of addition of N operands of length N bits each
shows that the proposed PIM can achieve at least 2x speed
up compared to previous designs in exact mode. Proposed
PIM can be at least 6x faster with 99.9% accuracy using
the approximation techniques proposed in [12]. The proposed
design is even better since the calculations for previous work
do not include the latency involved in shift operations. This
improvement comes at the expense of the overhead of inter-
connect circuitry and its control logic. However, the next best
adder, i.e., the PC-Adder [47] uses multiple arrays each having
different wordline and bitline controllers, introducing a lot of
area overhead. This overhead is not present in our design since
all the blocks share the same controllers.

E. NNPIM & Weight Sharing

We compare the efficiency and accuracy of the NNPIM over
different application with and without weight sharing. Table II
shows the impact of weight sharing on the classification
accuracy of NNPIM. Table II shows the NNPIM quality loss
(QL) for different applications when the number of shared
weights in each neuron changes from 8 to 64. The QL is
defined as the difference between NNPIM accuracy with and
without weight sharing. Our evaluation shows that a network
with 64 shared weights can provide the same accuracy as a
design without weight sharing. Further reducing the number
of weight to 8 reduces the classification accuracy of applica-
tions. For instance, CIFAR-10 and CIFAR-100 lose 1.2% and
2.8% quality respectively when the number of shared weights
decreases to 8.

NNPIM exploits this weight sharing in order to accelerate
neural network computation by reducing the multiplication
cost. Figure 11 shows the energy consumption and memory
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requirement of NNPIM running different applications with
different weight sharing. The reported improvements are com-
pared to energy consumption of the same applications running
on NVIDIA GTX 1080 GPU. The energy efficiency of NNPIM
significantly improves as the number of shared weights reduce.
Our evaluation shows that NNPIM without weight sharing
provides 14.6x energy efficiency improvement as compared
to GPU architecture. We observe that NNPIM gets energy
efficiency improvements from removing the data movement
cost and efficient in-memory computation. However, in terms
of performance the NNPIM advantage comes mostly from
addressing the data movement issue.

The NNPIM advantages are more obvious on large networks
such as CIFAR-10 and CIFAR-100, since these networks
have more data movement. Weight sharing can significantly
improve the NNPIM efficiency by reducing the computation
cost. The results show that NNPIM using 32-bit fixed point
operations and 64 shared weights provides 131.5x energy
efficiency improvement and 48.2x speedup as compared to
GPU architecture at 0% quality loss. With 1% and 2% quality
loss, the average energy efficiency improvements of NNPIM
increase to 235.6x and 384.0x respectively. Weight sharing
does not impact the performance of NNPIM since all neurons
in a layer are implemented in parallel and consecutive layers
are processed serially.

Figure 11 also shows the required NNPIM memory size
for different amounts of weight sharing. NNPIM requires
significantly lower memory size for PIM operation as com-
pared to NNPIM without weight sharing. As our results show,
decreasing the number of weights by half, reduces the number

of required multiplications by half. Our evaluation over all
applications indicates that by reducing the number of weights
to 64, NNPIM will provide maximum quality while using 7.8 x
less memory as compared to NNPIM without weight sharing.
Similarly, ensuring less than 1% and 2% quality loss, NNPIM
uses 12.4x and 15.6x lower memory size as compared to
NNPIM without weight sharing.

F. Energy Consumption and Performance

In this section we compare the energy consumption and exe-
cution time of NNPIM with DaDianNao [22] and ISAAC [17],
the state-of-the-art NN accelerators. All designs have been
tested over six different applications. For NN accelerators, we
select the best configuration reported in the papers [17], [22].
For instance, ISAAC design works at 1.2GHz and uses 8-bits
ADC, 1-bit DAC, 128x128 array size where each memristor
cell stores 2 bits. DaDianNao works at 600MHz, with 36MB
eDRAM size (4 per tile), 16 neural functional units, and
128-bit global bus. We see that of the previously proposed
designs, ISAAC performs better over all datasets. Figure 12
shows the energy efficiency improvement and speedup of
NNPIM (32-bit fixed point operations and 64 shared weights),
DaDianNao [22] and ISAAC [17] as compared to NVIDIA
GTX 1080 GPU architecture. For MNIST, ISOLET, and
INDOOR the GPU can process each input at 4.6ms, 4.3ms,
and 4.1ms respectively. For larger inputs and networks such
as VGG, GPU execution is 7.2ms (138 image/s). Our eval-
uation shows that NNPIM outperforms both DaDianNao and
ISAAC for all applications. For example, benchmarking with
MNIST, proposed NNPIM can provide 2.8 x energy efficiency
improvement and 2.9x speedup as compared to DaDianNao.
These improvements are higher for ImageNet and CIFAR-
100, as NNPIM has higher computational efficiency on large
networks. Our design can achieve 5.8x (1.5x) energy effi-
ciency improvement and 6.6 x (2.7x) speedup as compared to
DaDianNao (ISAAC) while providing the same classification
accuracy on all applications. At 1% quality loss, the NNPIM
energy efficiency grows 11.3x and 3.1x as compared to
DaDianNao and ISAAC respectively.

Since NNPIM removes the costly weight-input multiplica-
tions, it can achieve higher accuracy for deep networks with
large number of weights. We compare NNPIM efficiency on
four different networks with fully connected layers, designed
for MNIST dataset. Note that the goal of this experiment is to
show the impact of network size on NNPIM efficiency, not on
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the classification accuracy. We choose four configurations with
2, 10, 20, and 30 hidden layers, each with 4096 neurons. For
example, the first network with two hidden layer has the fol-
lowing topology: {IN : 784, FC:4096, FC :4096, FC: 10}.
Figure 13 compares the execution time of GPU and NNPIM
running the same networks. All results are reported for case
of using 64 shared weights. Our evaluation shows that as the
size of these networks increases, GPU execution time increases
significantly while the NNPIM execution time changes with
much lower rate. For example, NNPIM is 34.6x faster than
Nvidia GTX 1080 for a network with two hidden FC layers.
This further improves to 61.7x for a network with 100 hidden
FC layers. The higher efficiency of NNPIM in large network
comes from (i) NNPIM’s ability to parallelize each layer
operations, (ii) addressing the costly data movement between
memory and computing unit.

An NNPIM sub-unit consists of a pair of two 64256 mem-
ristive crossbar arrays, connected by the interconnect. The area
of this sub-unit is 301.74 um? at 45nm process node, which
includes the area of the required peripherals. To calculate area,
we estimate the occupied area by each component of NNPIM.
For example, for crossbar memory, we estimated the area
by using NVSim tool. Similarly, the area of the interconnect
and the peripheral circuits, such as the controller, column/row
decoders, are calculated using Synopsys Design Compiler.
The total number of blocks combined together dictates the
amount of parallelism achieved. We made an accelerator with
the total area similar to previous designs to have a fair
comparison. NNPIM consists of 256K of sub-units with the
total area of 79.10 mm? at 45nm process node. Table TIT
compares the computation efficiency of NNPIM with other
state-of-the-art accelerators. NNPIM has an areal computation
efficiency of 1853.9 GOP/s/mm?, which is higher than all
other accelerators. This is primarily due to the fact that un-
like other accelerators, NNPIM doesn’t use big ADCs/DACs.
These circuit components occupy the major part of area in
previous designs. Moreover, the computation efficiency of
NNPIM with respect to power is 432.9 GOP/s/W. Although
NNPIM doesn’t involve power-hungry circuit components, it
uses larger crossbars which results in similar power efficiency
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TABLE III
COMPUTATION EFFICIENCY OF NNPIM VS OTHER ACCELERATORS.

Metric NNPIM | DaDianNao [22] | ISAAC [17] | AtomLayer [48] | PipeLayer [49]
G()P/.V/mm2 1853.9 63.4 479.0 475.6 1485.0
GOP/s|W 4329 286.4 380.7 682.5 142.9
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Fig. 14. Lifetime analysis of NNPIM with change in the endurance of device.

than most accelerators. Only AtomLayer [48] is 1.6x more
power efficient than NNPIM since it reduces frequent ReRAM
writes.

H. Lifetime Analysis

The MAGIC NOR logic results in many write operations.
This may decrease reliability given the low endurance of the
commercially available ReRAM devices. However, NNPIM
reduces the number of switches required for neural network
inference by reducing the required computation for each mul-
tiplication (Section IV-C) and decreasing the number of shifts
(Section IV-D). Moreover, we implement simple endurance
management technique to increase the lifetime of our design.
As shown in Section III-B, implementing logic operations
using MAGIC NOR generates some intermediate states. To
store these intermediate states, some processing rows are
reserved in a memory block which are used by all logic
operations in the block. Hence, processing rows are the most
active and experience the worst endurance degradation. In
order to increase the lifetime of the memory, we change the
rows allocated for processing overtime. This distributes the
degradation across the block instead of being concentrated to
a few rows, effectively reducing the worst case degradation
per cell. It results in increase in the lifetime of the device. For
example, for memory blocks with 64 (1024) rows, and with
12 of them reserved for processing, this management increases
the lifetime of device by “5x ("85x).

We perform a sensitivity study of the lifetime of NNPIM
in terms of the number of classification tasks that can be
performed. In our study, we vary the endurance of a cell from
10° to 10%° writes (W). To calculate the lifetime, we first
calculate the worst case device state changes per memory cell
(S;) required for one inference task with different networks.
Then, W/S,, gives the total number of classification tasks
possible. Figure 14 shows the way the number of classification
tasks change with change in the endurance. We observe that
for the memory with endurance of 10'2 writes, NNPIM can
perform 3.5 x 10! classification tasks.
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1. Area Overhead

Comparing the area overhead of NNPIM to conventional
crossbar memory shows that the NNPIM adds 37.2% to the
area of the chip, of which 25% is for the shifter used for
multiplication, 9.3% for the modified sense amplifiers, and
2.9% for the registers storing the network weights. Weight
sharing significantly reduces the NN model size and the re-
quired hardware to process the weights. NNPIM area overhead
is significantly lower compared to prior PIM-based DNN
accelerators (87.7% in [17]) which uses eDRAM buffers and
large ADCs and DAC:s to covert the data from digital to analog
and analog to digital.

VI. CONCLUSION

In this paper, we propose NNPIM which aims at acceler-
ating the inference phase of neural networks. We introduce
a new processing in-memory based architecture to efficiently
implement the huge amount of computations involved in the
inference phase of neural networks. We use weight sharing
to reduce the computational requirement of NNs. We exploit
the consistency of weights at the hardware level by making
multiplication operations more efficient using the proposed
techniques. NNPIM is highly parallelizable and can process
neurons belonging to a layer in parallel. Our evaluation shows
that our design can achieve 131.5x higher energy efficiency
and 48.2x speedup as compared to GPU architecture.

VII. ACKNOWLEDGMENT

This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA and
NSF grants #1730158 and #1527034.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.

[2] L. Cavigelli, D. Bernath, M. Magno, and L. Benini, “Computationally
efficient target classification in multispectral image data with deep
neural networks,” in Target and Background Signatures II, vol. 9997,
p- 99970L, International Society for Optics and Photonics, 2016.

[3] C. Clark and A. Storkey, “Training deep convolutional neural networks
to play go,” in International Conference on Machine Learning, pp. 1766—
1774, 2015.

[4] K. Srinivas, B. K. Rani, and A. Govrdhan, “Applications of data mining
techniques in healthcare and prediction of heart attacks,” International
Journal on Computer Science and Engineering (IJCSE), vol. 2, no. 02,
pp- 250-255, 2010.

[5] T. Mikolov, M. Karafiit, L. Burget, J. éernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[6] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pp. 1-12, IEEE, 2016.

[71 B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in ACM
SIGARCH Computer Architecture News, vol. 44, pp. 267-278, IEEE
Press, 2016.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 161-170, ACM, 2015.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2903055, IEEE

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

[28]

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computers

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, pp. 243-254, IEEE, 2016.

C. Liu, M. Hu, J. P. Strachan, and H. H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in Proceedings of the 54th
Annual Design Automation Conference 2017, p. 87, ACM, 2017.

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, pp. 1-6, IEEE, 2016.

M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proceedings of the 54th
Annual Design Automation Conference 2017, p. 6, ACM, 2017.

M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” in Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pp. 757-763,
IEEE, 2017.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105-117, 2016.

M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing,
“Rapidnn: In-memory deep neural network acceleration framework,”
arXiv preprint arXiv:1806.05794, 2018.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: a novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, pp. 27-39, IEEE Press, 2016.
A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14-26,
2016.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269-284,
2014.

D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in IJCAI Proceedings-International Joint Confer-
ence on Artificial Intelligence, vol. 22, p. 1237, Barcelona, Spain, 2011.
M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural
networks for efficient fpga implementation,” in Field-Programmable
Custom Computing Machines (FCCM), 2017 IEEE 25th Annual Inter-
national Symposium on, pp. 85-92, IEEE, 2017.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘“Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision, pp. 525-542, Springer, 2016.
Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 609-622, IEEE Computer Society, 2014.

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pj per spike in 45nm,” in Custom Integrated Circuits Conference
(CICC), 2011 IEEE, pp. 1-4, IEEE, 2011.

A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and
B. Yuan, “Sc-denn: highly-scalable deep convolutional neural network
using stochastic computing,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 405-418, ACM, 2017.

S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC-Memristor-aided logic,” IEEE
Transactions on Circuits and Systems 1I: Express Briefs, vol. 61, no. 11,
pp. 895-899, 2014.

G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303-314,
1989.

M. Imani, S. Gupta, A. Arredondo, and T. Rosing, “Efficient query
processing in crossbar memory,” in Low Power Electronics and Design
(ISLPED, 2017 IEEE/ACM International Symposium on, pp. 1-6, IEEE,
2017.

M. Imani, S. Gupta, S. Sharma, and T. Rosing, “Nvquery: Efficient query
processing in non-volatile memory,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2018.

(29]

(30]

(31]

(32]

[33]

[34]

[45]

[46]

[47]

(48]

[49]

13

N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” [EEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635-650, 2016.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

R. Bernstein, “Multiplication by integer constants,” Software: practice
and experience, vol. 16, no. 7, pp. 641-652, 1986.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transactions
on Circuits and Systems 1I: Express Briefs, vol. 62, no. 8, pp. 786-790,
2015.

P. Knag, W. Lu, and Z. Zhang, “A native stochastic computing archi-
tecture enabled by memristors,” IEEE Transactions on Nanotechnology,
vol. 13, no. 2, pp. 283-293, 2014.

“Caltech  Library.”  http://www.vision.caltech.edu/Image_Datasets/
Caltech101/.

Y. LeCun, “The MNIST database of handwritten digits,” 1998.

“Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/
ISOLET.

“Uci  machine learning repository.” https://archive.ics.uci.edu/ml/
datasets/UJIIndoorLoc.
“Uci  machine learning repository.” https://archive.ics.uci.edu/ml/

datasets/Daily+and+Sports+Activities.

“The cifar dataset.” https://www.cs.toronto.edu/~kriz/cifar.html.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097-1105, 2012.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning, pp. 1139-1147, 2013.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp- 1929-1958, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2015.

A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE journal on emerging
and selected topics in circuits and systems, vol. 5, no. 1, pp. 64-74,
2015.

X. Qiao, X. Cao, H. Yang, L. Song, and H. Li, “Atomlayer: a uni-
versal reram-based cnn accelerator with atomic layer computation,” in
Proceedings of the 55th Annual Design Automation Conference, p. 103,
ACM, 2018.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pp. 541—
552, IEEE, 2017.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2903055, IEEE
Transactions on Computers

14

Saransh Gupta is a Ph.D. student in the Department
of Computer Science and Engineering at the Uni-
versity of California San Diego. He is a member of
System Energy Efficiency Laboratory (SEELab). He
received his B.E. (Hons) in Electrical and Electron-
ics Engineering from Birla Institute of Technology
& Science, Pilani - K.K. Birla Goa Campus in 2016
and M.S. in Electrical and Computer Engineering
from University of California San Diego in 2018.
His research interests include circuit, architecture,
and system level aspects of emerging computing

paradigms.

Mohsen Imani received his M.S. and BCs degrees
from the School of Electrical and Computer Engi-
neering at the University of Tehran in March 2014
and September 2011 respectively. From September
2014, he is a Ph.D. student in the Department of
Computer Science and Engineering at the Univer-
sity of California San Diego, CA, USA. He is a
project leader at System Energy Efficient Laboratory
(SeeLab) where he is mentoring several graduate
and undergraduate students on different computer
engineering projects from circuit to system level.
Mr. Imani’s research focuses on computer architecture, machine learning and
brain-inspired computing.

Harveen Kaur received her MS in Computer Sci-
ence from University of California at San Diego in
2018, and B.Tech in Electronics and Communication
Engineering from Indian Institute of Technology,
Delhi in 2014. Her research interests include com-
puter architecture, operating, and embedded systems.
She was a member of the System Energy Efficient
Laboratory (SEELAB), University of California at
San Diego.

Tajana Simunic Rosing is a Professor, a holder
of the Fratamico Endowed Chair, and a director
of System Energy Efficiency Lab at UCSD. She
is currently heading the effort in SmartCities as a
part of DARPA and industry funded TerraSwarm
center. During 2009-2012 she led the energy efficient
datacenters theme as a part of the MuSyC center. Her
research interests are energy efficient computing,
embedded and distributed systems. Prior to this she
was a full time researcher at HP Labs while being
leading research part-time at Stanford University.
She finished her PhD in 2001 at Stanford University, concurrently with
finishing her Masters in En-gineering Management. Her PhD topic was
Dynamic Management of Power Consumption. Prior to pursuing the PhD,
she worked as a Senior Design Engineer at Altera Corporation.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



